
Programming	
 Exercise	
 13.1	

Name Sorter

Purpose. The purpose is for you to demonstrate that you have mastered arrays, array-based lists,
sorting, and Boolean search.

Requirements. Write a program named nameSorter.cpp, to read names in a text file, sort them
alphabetically, and output them to the screen. Here are some detailed specifications:

1. The names are to be stored in an input text file, one name per line. Prompt the user to enter
the filename via the console keyboard.

2. Skip any blank lines that may be in the input file.

3. Skip any exact duplicates that may be in the input file.

4. Allow up to 5 names. Stop reading the file after the end-of-file is reached, or the 5th name is
added and the list reaches its capacity.

5. Sort the list alphabetically, from A to Z, according to the first letter in the name string.

Optional Requirement. The sorting and checking for duplicates should both be case-independent.
But do not permanently convert the name case -- compare lowercase (or uppercase) versions of the
text for sorting purposes.

Program I/O. Input: a filename from the console keyboard, and then open that text file to input
names. Output: the list of stored names to the console screen, in sorted order.

Example. Your program's console I/O should look something like this, with user input in blue:

 Enter the name of the file containing names: myFriends.txt

 Alex
 beth
 Carl
 Pat
 Sasha

Programming	
 Exercise	
 13.1	

Name Sorter

Purpose. The purpose is for you to demonstrate that you have mastered arrays, array-based lists,
sorting, and Boolean search.

Requirements. Write a program named NameSorter.java, to read names in a text file, sort them
alphabetically, and output them to the screen. Here are some detailed specifications:

1. The names are to be stored in an input text file, one name per line. Prompt the user to enter
the filename via the console keyboard.

2. Skip any blank lines that may be in the input file.

3. Skip any exact duplicates that may be in the input file.

4. Allow up to 5 names. Stop reading the file after the end-of-file is reached, or the 5th name is
added and the list reaches its capacity.

5. Sort the list alphabetically, from A to Z, according to the first letter in the name string.

Optional Requirement. The sorting and checking for duplicates should both be case-independent.
But do not permanently convert the name case -- compare lowercase (or uppercase) versions of the
text for sorting purposes.

Program I/O. Input: a filename from the console keyboard, and then open that text file to input
names. Output: the list of stored names to the console screen, in sorted order.

Example. Your program's console I/O should look something like this, with user input in blue:

 Enter the name of the file containing names: myFriends.txt

 Alex
 beth
 Carl
 Pat
 Sasha

Programming	
 Exercise	
 13.1	

Name Sorter

Purpose. The purpose is for you to demonstrate that you have mastered arrays, array-based lists,
sorting, and Boolean search.

Requirements. Write a program named nameSorter.py, to read names in a text file, sort them
alphabetically, and output them to the screen. Here are some detailed specifications:

1. The names are to be stored in an input text file, one name per line. Prompt the user to enter
the filename via the console keyboard.

2. Skip any blank lines that may be in the input file.

3. Skip any exact duplicates that may be in the input file.

4. Allow up to 5 names. Stop reading the file after the end-of-file is reached, or the 5th name is
added and the list reaches its capacity.

5. Sort the list alphabetically, from A to Z, according to the first letter in the name string.

Optional Requirement. The sorting and checking for duplicates should both be case-independent.
But do not permanently convert the name case -- compare lowercase (or uppercase) versions of the
text for sorting purposes.

Program I/O. Input: a filename from the console keyboard, and then open that text file to input
names. Output: the list of stored names to the console screen, in sorted order.

Example. Your program's console I/O should look something like this, with user input in blue:

 Enter the name of the file containing names: myFriends.txt

 Alex
 beth
 Carl
 Pat
 Sasha

