
Programming	 Exercise	 15.4	
Email Parser

Purpose. The purpose is for you to apply all that you have learned in your study with the book
“Programming Concepts in Python.

Requirements. Write a program named email.py that opens and reads a text file and writes
another text file. The purpose of the program is to extract email addresses embedded in the first
(input) text file, and copy them to the second (output) text file. In computer science, this process is
called "parsing". The application of the program is to make it easier to enter email addresses into an
email message that is to be sent to a list of recipients, when those recipients are not already in a
contacts list.

For example, college websites usually have a Faculty Directory. To send a single email message to
everyone, I would have to copy/paste each email address individually from the directory into the "to",
"cc", or "bcc" field of my email message. But using the new email.py program, I could save the web
page containing the directory listing to a file, run the program, open its output file, and copy/paste the
entire list from the file into the into the "to", "cc", or "bcc" field.

Here are the specifications for the program:

1. There are to be two console inputs to the program. For each input, there is to be a default
value, so that the user can simply press ENTER to accept any default.

2. The two console inputs are the names of the input and output files. The default filenames are
to be fileContainingEmails.txt for the input file, and copyPasteMyEmails.txt for
the output file. The default location for these files is the working folder of the program. The
actual names and locations of the files can be any valid filename for the operating system
being used, and any existing drive and folder.

3. It is okay for the user to select input and output filenames to be the same. If the user enters
another name for the input file besides the default, then the default for the output file should
change to be the same as that of the input file. If the input and output filenames are the same,
then the input file becomes replaced by the output file when the program is run.

4. The output file should be overwritten, and not appended to. No warning is necessary when
overwriting an already-existing file.

5. Output each email to the output file, separated by a semicolon and a space. Include nothing
before the first email address, and nothing after the last. Include nothing in the file besides
email addresses and semicolon+space separators.

6. Do not allow duplicate email addresses to appear in the output file. Since you are supposed to
preserve the case of email addresses, it is possible for an email address to appear more than
once, cased differently -- like rburns@dvc.edu and RBurns@dvc.edu. In this case, store one of
them in its originally cased form -- it does not matter which one you choose as long as it is one
of them and not some other casing. (So you will have to store each email in a list as you
process the input file, checking to see if it is already in the list before adding it. Then use the
list to write the output file after the input file has been fully processed and closed).

7. Count the number of non-duplicate email addresses found in the input file, and list each on a
separate line of console output. At the end of the list of email addresses on the console, output
the total number of non-duplicate email addresses found. If the number of email addresses
found is zero, do not write the output file for output, as that would overwrite any existing file.

8. In case an email address is split between two or more lines in the input file, ignore it. Valid
email addresses must appear fully within one line of the input file. Also, each line of the input
file may contain more than one email address.

9. Include friendly, helpful labels on the console output. Instead of just outputting the number of
email addresses found, say something like "16 email addresses were found, and copied to the
file output.txt". Or if none were found, say something like "Sorry, no email addresses were
found in the file input.txt".

10. Include a message in the console output explaining to the user to open the output file and
copy/paste its contents into the "to", "cc", or "bcc" field of any email message. But explain that
it is best to use the "bcc" field so that everyone's email address does not appear in the
message, to protect their privacy.

Hints. Email addresses consist of the characters A-Z, a-z, 0-9, underscore, dot, hyphen, and plus.
Also, they must have exactly one '@' followed by, but not adjacent to, at least one '.'.

The procedure basically involves reading a line from a file as a text variable, and traversing the line of
text to find a '@' character. If one is found, its position is saved. Then traverse backwards until an
invalid email character found -- that is the position before the email address starts. Then traverse
forwards from the '@' until an invalid email character is found -- that is the position after the email
address ends Also count the number of '.'s found as you traverse forwards from '@' -- if any are
found, then you can extract a copy of the email address as a substring. Continue from the position
after the extracted email address, until no more '@'s are found.

• Read a line from the input file as lineFromFile. Traverse it, testing each lineFromFile[i]
until you find a '@'. Then look backwards in a loop until you find an invalid email address
character, or run into the start of line. Then look forwards from the same '@' in another loop until
you find an invalid email address character, or run into the end of line. When looking forwards, be
sure to count the number of dots ('.') found -- there needs to be at least one in a valid email
address.

• Use a colllection to store found email addresses, because it’s capacity does not have to be
specified. Each time you find a new email address, search this list using a "Boolean Search Loop"
to avoid adding duplicate addresses.

• Write a value-returning function for testing a character to see if it is a valid email address
character. For example, def isValidEmailCharacter(c):. In it, test to see if ord(c) is
>=ord("A") and <=ord("Z"), or >=ord("a") and <=ord("z"), >=ord("0") and <=ord("9"), or ==ord("."),
or ==ord("-"), or ==ord("+"). If it satisfies any of these conditions, return true. Otherwise, return
false.

Program I/O. Input: two filenames from the console keyboard, possibly blank to indicate the default.
Output: the list of found emails, in sorted order, and an output text file.

